Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Placenta ; 147: 12-20, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38278000

RESUMO

INTRODUCTION: Placental phospholipid synthesis is critical for the expansion of the placental exchange surface area and for production of signaling molecules. Despite their importance, it is not yet established which enzymes involved in the de novo synthesis and remodeling of placental phospholipids are expressed and active in the human placenta. METHODS: We identified phospholipid synthesis enzymes by immunoblotting in placental homogenates and immunofluorescence in placenta tissue sections. Primary human trophoblast (PHT) cells from term healthy placentas (n = 10) were cultured and exposed to 13C labeled fatty acids (16:0, 18:1 and 18:2 n-6, 22:6 n-3) for 2 and 24 h. Three phospholipid classes; phosphatidic acid, phosphatidylcholine, and lysophosphatidylcholine containing 13C fatty acids were quantified by Liquid Chromatography with tandem mass spectrometry (LC/MS-MS). RESULTS: Acyl transferase and phospholipase enzymes were detected in human placenta homogenate and primarily expressed in the syncytiotrophoblast. Three representative 13C fatty acids (16:0, 18:1 and 18:2 n-6) were incorporated rapidly into phosphatidic acid in trophoblasts, but 13C labeled docosahexaenoic acid (DHA; 22:6 n-3) incorporation was not detected. 13C DHA was incorporated into phosphatidylcholine. Lysophosphatidylcholine containing all four 13C labeled fatty acids were found in high abundance. CONCLUSIONS: Phospholipid synthesis and remodeling enzymes are present in the syncytiotrophoblast. 13C labeled fatty acids were rapidly incorporated into cellular phospholipids. 13C DHA was incorporated into phospholipids through the remodeling pathway rather than by de novo synthesis. These understudied pathways are highly active and critical for structure and function of the placenta.


Assuntos
Fosfolipídeos , Placenta , Humanos , Gravidez , Feminino , Placenta/metabolismo , Fosfolipídeos/metabolismo , Lisofosfatidilcolinas/metabolismo , Ácidos Graxos/metabolismo , Fosfatidilcolinas/metabolismo
2.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37831056

RESUMO

Compelling epidemiological and animal experimental data demonstrate that cardiometabolic and neuropsychiatric diseases originate in a suboptimal intrauterine environment. Here, we review evidence suggesting that altered placental function may, at least in part, mediate the link between the maternal environment and changes in fetal growth and development. Emerging evidence indicates that the placenta controls the development and function of several fetal tissues through nutrient sensing, modulation of trophoblast nutrient transporters and by altering the number and cargo of released extracellular vesicles. In this Review, we discuss the development and functions of the maternal-placental-fetal interface (in humans and mice) and how cross-talk between these compartments may be a mechanism for in utero programming, focusing on mechanistic target of rapamycin (mTOR), adiponectin and O-GlcNac transferase (OGT) signaling. We also discuss how maternal diet and stress influences fetal development and metabolism and how fetal growth restriction can result in susceptibility to developing chronic disease later in life. Finally, we speculate how interventions targeting placental function may offer unprecedented opportunities to prevent cardiometabolic disease in future generations.


Assuntos
Desenvolvimento Fetal , Placenta , Gravidez , Feminino , Humanos , Camundongos , Animais , Placenta/metabolismo , Trofoblastos/metabolismo , Transdução de Sinais , Retardo do Crescimento Fetal
3.
Clin Sci (Lond) ; 137(8): 663-678, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37014924

RESUMO

Pregnant women with obesity are more likely to deliver infants who are large for gestational age (LGA). LGA is associated with increased perinatal morbidity and risk of developing metabolic disease later in life. However, the mechanisms underpinning fetal overgrowth remain to be fully established. Here, we identified maternal, placental, and fetal factors that are associated with fetal overgrowth in pregnant women with obesity. Maternal and umbilical cord plasma and placentas were collected from women with obesity delivering infants who were LGA (n=30) or appropriate for gestational age (AGA, n=21) at term. Maternal and umbilical cord plasma analytes were measured using multiplex sandwich assay and ELISA. Insulin/mechanistic target of rapamycin (mTOR) signaling activity was determined in placental homogenates. Amino acid transporter activity was measured in isolated syncytiotrophoblast microvillous membrane (MVM) and basal membrane (BM). Glucagon-like peptide-1 receptor (GLP-1R) protein expression and signaling were measured in cultured primary human trophoblast (PHT) cells. Maternal plasma glucagon-like peptide-1 (GLP-1) was higher in LGA pregnancies and positively correlated to birthweight. Umbilical cord plasma insulin, C-peptide, and GLP-1 were increased in obese-large for gestational age (OB-LGA) infants. LGA placentas were larger but showed no change in insulin/mTOR signaling or amino acid transport activity. GLP-1R protein was expressed in the MVM isolated from human placenta. GLP-1R activation stimulated protein kinase alpha (PKA), extracellular signal-regulated kinase-1 and-2 (ERK1/2), and mTOR pathways in PHT cells. Our results suggest elevated maternal GLP-1 may drive fetal overgrowth in obese pregnant women. We speculate that maternal GLP-1 acts as a novel regulator of fetal growth by promoting placental growth and function.


Assuntos
Diabetes Gestacional , Placenta , Feminino , Humanos , Gravidez , Diabetes Gestacional/metabolismo , Desenvolvimento Fetal , Macrossomia Fetal/complicações , Macrossomia Fetal/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Placenta/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Peptídeo 1 Semelhante ao Glucagon
4.
Amino Acids ; 55(1): 125-137, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36383272

RESUMO

Highly proliferative cells rely on one carbon (1C) metabolism for production of formate required for synthesis of purines and thymidine for nucleic acid synthesis. This study was to determine if extracellular serine and/or glucose and fructose contribute the production of formate in ovine conceptuses. Suffolk ewes (n = 8) were synchronized to estrus, bred to fertile rams, and conceptuses were collected on Day 17 of gestation. Conceptuses were either snap frozen in liquid nitrogen (n = 3) or placed in culture in medium (n = 5) containing either: 1) 4 mM D-glucose + 2 mM [U-13C]serine; 2) 6 mM glycine + 4 mM D-glucose + 2 mM [U-13C]serine; 3) 4 mM D-fructose + 2 mM [U-13C]serine; 4) 6 mM glycine + 4 mM D-fructose + 2 mM [U-13C]serine; 5) 4 mM D-glucose + 4 mM D-fructose + 2 mM [U-13C]serine; or 6) 6 mM glycine + 4 mM D-glucose + 4 mM D-fructose + 2 mM [U-13C]serine. After 2 h incubation, conceptuses in their respective culture medium were homogenized and the supernatant analyzed for 12C- and 13C-formate by gas chromatography and amino acids by high performance liquid chromatography. Ovine conceptuses produced both 13C- and 12C-formate, indicating that the [U-13C]serine, glucose, and fructose were utilized to generate formate, respectively. Greater amounts of 12C-formate than 13C-formate were produced, indicating that the ovine conceptus utilized more glucose and fructose than serine to produce formate. This study is the first to demonstrate that both 1C metabolism and serinogenesis are active metabolic pathways in ovine conceptuses during the peri-implantation period of pregnancy, and that hexose sugars are the preferred substrate for generating formate required for nucleotide synthesis for proliferating trophectoderm cells.


Assuntos
Interferon Tipo I , Serina , Gravidez , Ovinos , Animais , Feminino , Masculino , Glucose , Frutose , Carneiro Doméstico/metabolismo , Glicina , Formiatos
5.
Mol Reprod Dev ; 90(7): 673-683, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460118

RESUMO

Conceptus elongation and early placentation involve growth and remodeling that requires proliferation and migration of cells. This demands conceptuses expend energy before establishment of a placenta connection and when they are dependent upon components of histotroph secreted or transported into the uterine lumen from the uterus. Glucose and fructose, as well as many amino acids (including arginine, aspartate, glutamine, glutamate, glycine, methionine, and serine), increase in the uterine lumen during the peri-implantation period. Glucose and fructose enter cells via their transporters, SLC2A, SLC2A3, and SLC2A8, and amino acids enter the cells via specific transporters that are expressed by the conceptus trophectoderm. However, porcine conceptuses develop rapidly through extensive cellular proliferation and migration as they elongate and attach to the uterine wall resulting in increased metabolic demands. Therefore, coordination of multiple metabolic biosynthetic pathways is an essential aspect of conceptus development. Oxidative metabolism primarily occurs through the tricarboxylic acid (TCA) cycle and the electron transport chain, but proliferating and migrating cells, like the trophectoderm of pigs, enhance aerobic glycolysis. The glycolytic intermediates from glucose can then be shunted into the pentose phosphate pathway and one-carbon metabolism for the de novo synthesis of nucleotides. A result of aerobic glycolysis is limited availability of pyruvate for maintaining the TCA cycle, and trophectoderm cells likely replenish TCA cycle metabolites primarily through glutaminolysis to convert glutamine into TCA cycle intermediates. The synthesis of ATP, nucleotides, amino acids, and fatty acids through these biosynthetic pathways is essential to support elongation, migration, hormone synthesis, implantation, and early placental development of conceptuses.


Assuntos
Glutamina , Placenta , Suínos , Gravidez , Feminino , Animais , Placenta/metabolismo , Glutamina/metabolismo , Útero/metabolismo , Aminoácidos/metabolismo , Redes e Vias Metabólicas , Frutose/metabolismo , Glucose/metabolismo , Nucleotídeos/metabolismo
6.
Biol Reprod ; 107(4): 1084-1096, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35835585

RESUMO

Roles of fructose in elongating ovine conceptuses are poorly understood, despite it being the major hexose sugar in fetal fluids and plasma throughout gestation. Therefore, we determined if elongating ovine conceptuses utilize fructose via metabolic pathways for survival and development. Immunohistochemical analyses revealed that trophectoderm and extra-embryonic endoderm express ketohexokinase and aldolase B during the peri-implantation period of pregnancy for conversion of fructose into fructose-1-phosphate for entry into glycolysis and related metabolic pathways. Conceptus homogenates were cultured with 14C-labeled glucose and/or fructose under oxygenated and hypoxic conditions to assess contributions of glucose and fructose to the pentose cycle (PC), tricarboxylic acid cycle, glycoproteins, and lipid synthesis. Results indicated that both glucose and fructose contributed carbons to each of these pathways, except for lipid synthesis, and metabolized to pyruvate and lactate, with lactate being the primary product of glycolysis under oxygenated and hypoxic conditions. We also found that (1) conceptuses preferentially oxidized glucose over fructose (P < 0.05); (2) incorporation of fructose and glucose at 4 mM each into the PC by Day 16 conceptus homogenates was similar in the presence or absence of glucose, but incorporation of glucose into the PC was enhanced by the presence of fructose (P < 0.05); (3) incorporation of fructose into the PC in the absence of glucose was greater under oxygenated conditions (P < 0.01); and (4) incorporation of glucose into the PC under oxygenated conditions was greater in the presence of fructose (P = 0.05). These results indicate that fructose is an important metabolic substrate for ovine conceptuses.


Assuntos
Frutose-Bifosfato Aldolase , Frutose , Animais , Feminino , Frutoquinases , Glucose , Lactatos , Lipídeos , Pentoses , Gravidez , Piruvatos , Ovinos , Carneiro Doméstico
7.
Biol Reprod ; 107(3): 823-833, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552608

RESUMO

During the peri-implantation period of pregnancy, the trophectoderm of pig conceptuses utilize glucose via multiple biosynthetic pathways to support elongation and implantation, resulting in limited availability of pyruvate for metabolism via the TCA cycle. Therefore, we hypothesized that porcine trophectoderm cells replenish tricarboxylic acid (TCA) cycle intermediates via a process known as anaplerosis and that trophectoderm cells convert glutamine to α-ketoglutarate, a TCA cycle intermediate, through glutaminolysis. Results demonstrate: (1) that expression of glutaminase (GLS) increases in trophectoderm and glutamine synthetase (GLUL) increases in extra-embryonic endoderm of conceptuses, suggesting that extra-embryonic endoderm synthesizes glutamine, and trophectoderm converts glutamine into glutamate; and (2) that expression of glutamate dehydrogenase 1 (GLUD1) decreases and expression of aminotransferases including PSAT1 increase in trophectoderm, suggesting that glutaminolysis occurs in the trophectoderm through the GLS-aminotransferase pathway during the peri-implantation period. We then incubated porcine conceptuses with 13C-glutamine in the presence or absence of glucose in the culture media and then monitored the movement of glutamine-derived carbons through metabolic intermediates within glutaminolysis and the TCA cycle. The 13C-labeled carbons were accumulated in glutamate, α-ketoglutarate, succinate, malate, citrate, and aspartate in both the presence and absence of glucose in the media, and the accumulation of 13C-labeled carbons significantly increased in the absence of glucose in the media. Collectively, our results indicate that during the peri-implantation period of pregnancy, the proliferating and migrating trophectoderm cells of elongating porcine conceptuses utilize glutamine via glutaminolysis as an alternate carbon source to maintain TCA cycle flux.


Assuntos
Glutamina , Ácidos Cetoglutáricos , Animais , Isótopos de Carbono , Feminino , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Ácidos Cetoglutáricos/metabolismo , Gravidez , Ácido Pirúvico , Suínos
8.
Placenta ; 124: 28-36, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35605542

RESUMO

INTRODUCTION: The uterus and placenta transport water during pregnancy recognition signaling, conceptus implantation, and placental development/placentation. This is likely influenced by aquaporins (AQPs) in the reproductive tract. This study determined mRNA and cell-type specific expression of AQP 1, 5, 8, and 9 proteins in the porcine uterus and placenta. METHODS: Porcine uteri and Chorioallantois were subjected to real-time PCR and immunofluorescence microscopy. RESULTS: AQP1 mRNA was maximal by Day 25 in endometrium and remained stable thereafter. AQP1 mRNA did not change in chorioallantois. AQP1 protein localized to erythrocytes and endothelium of the endometrium and allantois, and to smooth muscle of the myometrium. AQP5 protein localized to apical and lateral surfaces of the chorionic epithelia of areolae, but mRNA did not change in chorioallantois. AQP8 mRNA was high in the endometrium from Days 15 through 60 of gestation, and protein localized to multiple cell types within the endometrium and chorioallantois. AQP9 mRNA was highest in the endometrium on Days 10, 12 and 25, but did not change in the chorioallantois. AQP9 protein localized to the apical surface of endometrial luminal epithelial cells during early pregnancy, with a shift towards the basal surface later. AQP9 protein was observed in the allantoic epithelium. DISCUSSION: Results reveal pigs can potentially use AQP1, AQP5, AQP8, and AQP9 to transport water from the endometrial bloodstream to the allantoic bloodstream or allantoic fluid. The reverse is also possible and may explain the mechanism for changing volumes of allantoic fluid and hydration of allantoic connective tissues during pregnancy.


Assuntos
Aquaporina 1 , Aquaporinas , Animais , Aquaporina 1/genética , Aquaporina 1/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Endométrio/metabolismo , Feminino , Placenta/metabolismo , Gravidez , RNA Mensageiro/análise , Suínos , Água/metabolismo
9.
Front Biosci (Landmark Ed) ; 27(4): 117, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35468676

RESUMO

BACKGROUND: Fetal-placental development depends on a continuous and efficient supply of nutrients from maternal blood that are acquired by exchange through the placenta. However, the placenta is a low permeability barrier, and effective transport of substances depends on specific transport mechanisms. Active transport requires that ions or nutrients be moved against an electrical and/or concentration gradient. In pigs, active transport of ions occurs across the chorioallantois placenta to produce an electrochemical gradient that changes throughout gestation. The aim of this study was to utilize Ussing chambers to detect regulation of ion transport across the porcine chorioallantois by a factor(s) within the uterine-placental environment of pigs. METHODS: For the measurement of transchorioallantoic voltage potential as an index of ion transport across the placenta, pieces of chorioallantoic tissue from Day 60 of gestation were mounted into the cassettes of Ussing chambers, and treatments were added to the mucasal side of the tissue. Treatments included: (1) media incubated with Day 60 chorioallantois (placenta-conditioned media); (2) osteopontin/secreted phosphoprotein 1 (OPN/SPP1) purified from cow's milk; (3) placenta-conditioned media from which OPN/SPP1 was removed; and (4) recombinant rat OPN with an intact RGD integrin binding sequence or a mutated RAD sequence. Ouabain was added to both sides of the chamber. Immunofluorescence was utilized to localize beta 3 integrin, aquaporin 8 and OPN/SPP1 in porcine placental tissues, and OPN/SPP1 within porcine lung, kidney and small intestine. RESULTS: Day 60 chorioallantoic membranes had greater transepithelial voltage in the presence of porcine placenta-conditioned media, indicating that a molecule(s) released from the placenta increased ion transport across the placenta. OPN/SPP1 purified from cow's milk increased ion transport across the placenta. When OPN/SPP1 was removed from placenta-conditioned media, ion transport across the placenta did not increase. Recombinant rat OPN/SPP1 with a mutated RGD sequence that does not bind integrins (RAD) did not increase ion transport across the placenta. Ouabain, an inhibiter of the sodium-potassium ion pump, ablated ion transport across the placenta. CONCLUSIONS: The present study documents a novel pericellular matrix role for OPN/SPP1 to bind integrins and increase ion transport across the porcine chorioallantoic placenta.


Assuntos
Integrinas , Osteopontina , Animais , Bovinos , Meios de Cultivo Condicionados , Feminino , Integrinas/metabolismo , Íons , Oligopeptídeos , Osteopontina/metabolismo , Ouabaína , Placenta/metabolismo , Gravidez , Ratos , Suínos
10.
Amino Acids ; 54(2): 193-204, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34741684

RESUMO

Dietary supplementation with 0.4 or 0.8% L-arginine (Arg) to gilts between days 14 and 25 of gestation enhances embryonic survival and vascular development in placentae; however, the underlying mechanisms are largely unknown. This study tested the hypothesis that Arg supplementation stimulated placental expression of mRNAs and proteins that enhance angiogenesis, including endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), placental growth factor (PGF), GTP cyclohydrolase-I (GTP-CH1), ornithine decarboxylase (ODC1), and vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2). Beginning on the day of breeding, gilts were fed daily 2 kg of a corn-soybean meal-based diet supplemented with 0.0 (control), 0.4, or 0.8% Arg. On day 25 of gestation, gilts were hysterectomized to obtain uteri and conceptuses for histochemical and biochemical analyses. eNOS and VEGFR1 proteins were localized to endothelial cells of maternal uterine blood vessels and to the uterine luminal epithelium, respectively. Compared with the control, dietary supplementation with 0.4 or 0.8% Arg increased (P < 0.05) the amounts of nitrite plus nitrate (NOx; oxidation products of NO) and polyamines in allantoic and amniotic fluids, concentrations of NOx, tetrahydrobiopterin (BH4, an essential cofactor for all NOS isoforms) and polyamines in placentae, as well as placental protein abundances of GTP-CH1 (the key enzyme for BH4 production) and ODC1 (the key enzyme for polyamine synthesis). Placental  mRNA levels for GTP-CH1, eNOS, PGF, VEGF, and VEGFR2 increased in response to both 0.4% and 0.8% Arg supplementation. Collectively, these results indicate that dietary Arg supplementation to gilts between days 14 and 25 of pregnancy promotes placental angiogenesis by increasing the expression of mRNAs and proteins for angiogenic factors as well as NO and polyamine syntheses.


Assuntos
Proteínas Angiogênicas , Placenta , Proteínas Angiogênicas/metabolismo , Animais , Arginina/metabolismo , Arginina/farmacologia , Suplementos Nutricionais , Células Endoteliais/metabolismo , Feminino , Placenta/metabolismo , Fator de Crescimento Placentário/metabolismo , Poliaminas/metabolismo , Gravidez , Sus scrofa/metabolismo , Suínos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Adv Exp Med Biol ; 1354: 49-62, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34807436

RESUMO

The period of conceptus (embryo and extraembryonic membrane) development between fertilization and implantation in mammalian species is critical as it sets the stage for placental and fetal development. The trophectoderm and endoderm of pre-implantation ovine and porcine conceptuses undergo elongation, which requires rapid proliferation, migration, and morphological modification of the trophectoderm cells. These complex events occur in a hypoxic intrauterine environment and are supported through the transport of secretions from maternal endometrial glands to the conceptus required for the biochemical processes of cell proliferation, migration, and differentiation. The conceptus utilizes glucose provided by the mother to initiate metabolic pathways that provide energy and substrates for other metabolic pathways. Fructose, however, is in much greater abundance than glucose in amniotic and allantoic fluids, and fetal blood during pregnancy. Despite this, the role(s) of fructose is largely unknown even though a switch to fructosedriven metabolism in subterranean rodents and some cancers are key to their adaptation to hypoxic environments.


Assuntos
Embrião de Mamíferos , Placenta , Animais , Implantação do Embrião , Endométrio , Feminino , Frutose , Gravidez , Ovinos , Suínos , Útero
12.
Biology (Basel) ; 10(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201059

RESUMO

Cells respond to extracellular mechanical forces through the assembly of integrin adhesion complexes (IACs) that provide a scaffold through which cells sense and transduce responses to those forces. IACs are composed of transmembrane integrin receptors that bind to extracellular matrix (ECM) proteins externally and connect with the actomyosin cytoskeleton internally. Myometrial smooth muscle cells respond to forces that arise due to increases in fetal growth/weight, placental fluid volumes, and blood flow. As a result, the uterus transforms into an organ that can forcefully expel the fetus and placental membranes during parturition. While earlier studies focused on IAC expression in the myometrial compartment of rodents and humans to explore pregnancy-associated responses, the present study examines IAC assembly in ovine myometrium where mechanical forces are expected to be amplified in a manner similar to humans. Results indicate that the ITGA5 and ITGB1 heterodimers associate with the ECM protein FN1 externally, and with VCL and TLN1 internally, to form IACs in myometrial cells during the first trimester of pregnancy. These IACs become increasingly ordered until parturition. This ordered structure is lost by one day postpartum; however, the abundance of the integrin proteins remains elevated for at least two weeks postpartum. Implications of the present study are that sheep are similar to humans regarding the assembly of IACs in the pregnant myometrium and suggest that IACs may form much earlier in human gestation than was previously implied by the rat model. Results highlight the continued value of the sheep model as a flagship gynecological model for understanding parturition in humans.

13.
Biol Reprod ; 105(4): 892-904, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34165144

RESUMO

Secreted phosphoprotein 1 (SPP1, also known as osteopontin) binds integrins to mediate cell-cell and cell-extracellular matrix communication to promote cell adhesion, migration, and differentiation. Considerable evidence links SPP1 to pregnancy in several species. Current evidence suggests that SPP1 is involved in implantation and placentation in mice, but in vivo localization of SPP1 and in vivo mechanistic studies to substantiate these roles are incomplete and contradictory. We localized Spp1 mRNA and protein in the endometrium and placenta of mice throughout gestation, and utilized delayed implantation of mouse blastocysts to link SPP1 expression to the implantation chamber. Spp1 mRNA and protein localized to the endometrial luminal (LE), but not glandular epithelia (GE) in interimplantation regions of the uterus throughout gestation. Spp1 mRNA and protein also localized to uterine naturel killer (uNK) cells of the decidua. Within the implantation chamber, Spp1 mRNA localized only to intermittent LE cells, and to the inner cell mass. SPP1 protein localized to intermittent trophoblast cells, and to the parietal endoderm. These results suggest that SPP1: (1) is secreted by the LE at interimplantation sites for closure of the uterine lumen to form the implantation chamber; (2) is secreted by LE adjacent to the attaching trophoblast cells for attachment and invasion of the blastocyst; and (3) is not a component of histotroph secreted from the GE, but is secreted from uNK cells in the decidua to increase angiogenesis within the decidua to augment hemotrophic support of embryonic/fetal development of the conceptus.


Assuntos
Implantação do Embrião , Embrião de Mamíferos/metabolismo , Osteopontina/genética , Placenta/metabolismo , Prenhez/genética , Útero/metabolismo , Animais , Feminino , Camundongos , Osteopontina/metabolismo , Gravidez , Prenhez/metabolismo
14.
Adv Exp Med Biol ; 1285: 17-28, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33770400

RESUMO

During the peri-implantation period, conceptuses [embryo and placental membranes, particularly the trophectoderm (Tr)] of farm animals (e.g., sheep and pigs) rapidly elongate from spherical to tubular to filamentous forms. In concert with Tr outgrowth during conceptus elongation, the Tr of sheep and pig conceptuses attaches to the endometrial luminal epithelium (LE) to initiate placentation. In sheep, binucleate cells (BNCs) begin to differentiate from the mononuclear trophectoderm cells and migrate to the endometrial LE to form syncytial plaques. These events require Tr cells to expend significant amounts of energy to undergo timely and extensive proliferation, migration and fusion. It is likely essential that conceptuses optimally utilize multiple biosynthetic pathways to convert molecules such as glucose, fructose, and glutamine (components of histotroph transport by sheep and pig endometria into the uterine lumen), into ATP, amino acids, ribose, hexosamines and nucleotides required to support early conceptus development and survival. Elongating and proliferating conceptus Tr cells potentially act, in a manner similar to cancer cells, to direct carbon generated from glucose and fructose away from the TCA cycle for utilization in branching pathways of glycolysis, including the pentose phosphate pathway, one-carbon metabolism, and hexosamine biosynthesis. The result is a limited availability of pyruvate for maintaining the TCA cycle within mitochondria, and Tr cells replenish TCA cycle metabolites via a process known as anaplerosis, primarily through glutaminolysis to convert glutamine into TCA cycle intermediates. Here we describe the cell-specific expression of enzymes required for serine biosynthesis, one-carbon metabolism and glutaminolysis at the uterine-placental interface of sheep and pigs, and propose that these biosynthetic pathways are essential to support early placental development including Tr elongation, cell migration, cell fusion and implantation by ovine and porcine conceptuses.


Assuntos
Animais Domésticos , Serina , Animais , Implantação do Embrião , Embrião de Mamíferos , Endométrio , Feminino , Gravidez , Ovinos , Suínos , Útero
15.
Biol Reprod ; 103(5): 1018-1029, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32716497

RESUMO

The emerging paradigm in the immunology of pregnancy is that implantation of conceptuses does not progress in an immunologically suppressed environment. Rather, the endometrium undergoes a controlled inflammatory response during implantation as trophectoderm of elongating and implanting pig conceptuses secrete the pro-inflammatory cytokine interferon gamma (IFNG). Results of this study with pigs revealed: (1) accumulation of immune cells and apoptosis of stromal cells within the endometrium at sites of implantation during the period of IFNG secretion by conceptuses; (2) accumulation of proliferating cell nuclear antigen (PCNA)-positive T cells within the endometrium at sites of implantation; (3) significant increases in expression of T cell co-signaling receptors including programmed cell death 1 (PDCD1), CD28, cytotoxic T-lymphocyte associated protein 4 (CTLA-4), and inducible T cell co-stimulator (ICOS), as well as chemokines CXCL9, 10, and 11 within the endometrium at sites of implantation; (4) significant increases in T cell co-signaling receptors, PDCD1 and ICOS, and chemokine CXCL9 in the endometrium of cyclic gilts infused with IFNG; and (5) identification of CD4+ (22.59%) as the major T cell subpopulation, with minor subpopulations of CD8+ (1.38%), CD4+CD25+ (1.08%), and CD4+CD8+ (0.61%) T cells within the endometrium at sites of implantation. Our results provide new insights into the immunology of implantation to suggest that trophectoderm cells of pigs secrete IFNG to recruit various subpopulations of T cells to the endometrium to contribute to a controlled inflammatory environment that supports the active breakdown and restructuring of the endometrium in response to implantation of the conceptus.


Assuntos
Implantação do Embrião/fisiologia , Endométrio/metabolismo , Interferon gama/metabolismo , Linfócitos T/metabolismo , Animais , Feminino , Suínos
16.
Endocrinology ; 161(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556218

RESUMO

The conceptuses (embryo/fetus and placental membranes) of pigs require energy to support elongation and implantation, and amounts of glucose and fructose increase in the uterine lumen during the peri-implantation period. Conceptuses from day 16 of pregnancy were incubated with either 14C-glucose or 14C-fructose and amounts of radiolabeled CO2 released from the conceptuses measured to determine rates of oxidation of glucose and fructose. Glucose and fructose both transport into conceptuses, and glucose is preferentially metabolized in the presence of fructose, whereas fructose is actively metabolized in the absence of glucose and to a lesser extent in the presence of glucose. Endometrial and placental expression of glucose transporters SLC2A1, SLC2A2, SCL2A3, and SLC2A4 were determined. SLC2A1 messenger RNA (mRNA) and protein, and SLC2A4 mRNA were abundant in the uterine luminal epithelium of pregnant compared to cycling gilts, and increased in response to progesterone and conceptus-secreted estrogen. SLC2A2 mRNA was expressed weakly by conceptus trophectoderm on day 15 of pregnancy, whereas SLC2A3 mRNA was abundant in trophectoderm/chorion throughout pregnancy. Therefore, glucose can be transported into the uterine lumen by SLC2A1, and then into conceptuses by SLC2A3. On day 60 of gestation, the cell-specific expression of these transporters was more complex, suggesting that glucose and fructose transporters are precisely regulated in a spatial-temporal pattern along the uterine-placental interface of pigs to maximize hexose sugar transport to the pig conceptus/placenta.


Assuntos
Ectoderma/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 3/genética , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Hormônios Esteroides Gonadais/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Ectoderma/metabolismo , Implantação do Embrião/efeitos dos fármacos , Implantação do Embrião/genética , Embrião de Mamíferos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Estradiol/farmacologia , Feminino , Frutose/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Glicólise/genética , Masculino , Gravidez , Progesterona/farmacologia , Suínos/embriologia , Suínos/genética , Suínos/metabolismo
17.
Anim Reprod ; 15(Suppl 1): 843-855, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-36249852

RESUMO

The establishment of pregnancy in sheep includes elongation of the blastocyst into a filamentous conceptus, pregnancy recognition, production of histotroph, attachment of the conceptus to the endometrium for implantation, and development of synepitheliochorial placentation. These processes are complex, and this review describes some of the molecular events that underlie and support successful pregnancy. The free-floating sheep blastocyst elongates into a filamentous conceptus and metabolizes, or is responsive to, molecules supplied by the endometrium as histotroph. Amongst these molecules are SPP1, glucose and fructose, and arginine that stimulate the MTOR nutrient sensing system. The placental trophectoderm of elongating conceptuses initiate pregnancy recognition and implantation. The mononucleate cells of the trophectoderm secrete IFNT, which acts on the endometrial LE to block increases in estrogen receptor α to preclude oxytocin receptor expression, thereby preventing oxytocin from inducing luteolytic pulses of PGF2α. In addition, IFNT increases expression of IFN stimulated genes in the endometrial stroma, including ISG15, a functional ubiquitin homologue. Implantation is the initial step in placentation, and includes sequential pre-contact, apposition, and adhesion phases. Implantation in sheep includes downregulation of Muc1 and interaction of GLYCAM1, galectin 15 (LGALS15) and SPP1 with lectins and integrins (αvß3). Sheep have synepitheliochorial placentation in which mononucleate trophectoderm cells fuse to form binucleate cells (BNCs). BNCs migrate and fuse with endometrial LE cells to form trinucleate syncytial cells, and these syncytia enlarge through continued BNC fusion to form syncytial plaques that form the interface between endometrial and placental tissues within the placentome. The placentae of sheep organize into placentomal and interplacentomal regions. In placentomes there is extensive interdigitation of endometrial and placental tissues to provide hemotrophic nutrition to the fetus. In interplacentomal regions there is epitheliochorial attachment of endometrial LE to trophectoderm, mediated through focal adhesion assembly, and areolae that take up histotroph secreted by endometrial GE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA